sWKVgi6LXzAc/9urF6wi/RQmBGgBVYALQAVcOWcAxm8Y1s4jQRKPFj/dxwF0meKb6oNyQpSfc4AuzGa6PxgEorNCADHEMQzo/xkDWj0wEDFwYExEJfPCCy/ojsTEsGC2QB1Sf7ybuuIcW4DTUZ9//mfqNI4uGdAHKCgHOl18HFldRRkYDEzatg6SzegT+dtAwlLL2759IlPL295FyrnRvIP6IjDPz372ohLSLrME6swfRAFfAJeUawyazDpsBvSwoEvZyAseAXSfffY5+f73/7f6B+MpYWBrqX2bfes/G3R5/6MAXRYd4S8N6GJQewq6Dkkykq4PLBwDFhCAYgBj4AWIQAAOIOaAzHkvsFBiJNAdIE929B0jsQV7ob8b16+rmxggpx0rUC/YIMF2LWfPnJdjR0/I+XMX5eKFS3Ka5amnz2p65burUlNdJy3NbdIbikgykZaBfhEiUg4Q0ER1hnFJxIlvG5Z4LK5Rq4iMz9bvv/71r+Wbrd9IJOw2u9RyJFN6P8fbtm2XKVN+K6+99nvZuvVbHf3pwCadVVZWqT7su++uqE8xkhXSGZ1F1Rl4X7D+fxIpTfhCArsE7xhA0p8g8gHVAZH54qLGQepyMwz/Pv/YqQfYHimscXzZ7ZitjOjkJmWSDwTYok6iblnzzzGgyyBooAtfGPCOZuZFvoA60jYGz7/+9V2VtDEYWQwPA1zSRw66wc4qyis5PRlYBuxWRBJukjJandMebuCD14YPgNbnaIv8eTshBMFm9+49UlRUrPF0CaBFDBSM7lbXefMY/Gcb0uxLJyfVeLrZoApDmnQLSBioosNF8uUcz5j0RuUBPrhpsSgBHbD/vIF0Jk0lJZpOSjgRU4r1pyQx2K/EsRH3QPGBtCRlQFIyKEzW0zBVKi2D6X6HBGAwBCr0D8itGzfk2pUr0p9M6flUPCFxtmaJxZWuXr4ic2bOlp8//zP5xc9elJd/+bJMefkVTZ9/9nn54+//IFs2bpHOtk4ZTA/KQAq0FRmEOVMDei7FEtpkWvMP9/RKe0ub7N+zT97685syv6xcrlz6TiKhsF7nuSjxaNs7pbOtQ65euS5FRWXyxz86oEBHSScGDPgj8PWBAwflzt07wgBD/GHIdttIy4DEB/qlL5WU3nhMeqIR6YqElbr7IhKK9UkoFg1SjodTbywq4bwUk95on/SwPXlfRI/DzA4ScYmlkhJHN55O6TG/o8yIkgnpS0BxJX7717Kvx4NZEyBoEqc/5ed46Lx/jzsmHi2qGlYWMqOZOnWavPnmW+plA3+iGnPCgBMOfKCFZ8dL5EebITUTLGj69Jnyi1+8pEHgAWInTTuPE8DepG6TtvludrTuH0jrpq265186qYH+2QprJCJGdZy2CCiRTolRsj+dObbrpDHaxCgel7PnzsmRo0elu6dHYghRGMbZPYb+zSwAIzD2EI+SzBbxSdeNYRFochNbeYV6u+XoscNSUlokK1Yu13Tjpi8kFOp2m9XqRgTU0YPUT8xt3fEbY+eDxCYHhf5MYASnDHM4R7uTut2g6U8MMAzMzvBpA7sbbPIPOoXePZpr3zNQhUk5tlGf1BjfH5kMoEm5zocAujA6EcYIgMPiiEJ/VJmCZ54UcM0ArHcP5wDfNJZnKooAJbyfvZ0UgN28FMA9c/KU9HZ3S5oODlNR6XxjNCbdHZ2y/Zvt8uYbf5EP//4P2fTFJtnw6QZ556135PXXXpcNn3wu1ferJNQVkq72Lk0Hkv0i/SKpeEqSMQC3XwZTA5KOpyTc3SuRUETOnTor7779rqxavlI6WtozYA1Qcx8EiIe6emX1ynUya9bcjIcCagU6I6DBkmWCDN28eUN33WBjz6hSWPpivZIcSGn9xBV800OD1GBaBygGqehgftJBbKBfknkoxaaijGEBpan3gX4FWwPUBJ27Py3x/pQD4XQyA8ScTw0OSJKNSYN3JAbc/fpc2vGN8Rcp/GYEbxWSOLkfXsXIi/6esKJsfMguJ/Aizz6KP6RCQBbn/w8++FA9TpC+kRTz/fGM9i12yQ52ygZ82bRVd1UZ7NdUf9v5rDSFENLvKDXQL0YII5D9JrX7fDDm+F5lhVy/dVP64jG9h+cKzTxNrnHpgIo/iEC5KJWOS6i3S3bv2SEzZk6VxUsWyOw5M+STT9dJW3uzpNJ46QTfnCOlPtjeKx/pIBWoh3wesmPqFz4A0wBdf7bugHdIlciACDE40m4MjE7ydzYc2svAOF+bPuz5zIo0CkMBbUSwjHzmpzPYaAE4QNzPR3KMTy+6TJif+/hok465j2PAuTfcK71IUUhlkbB094akK9SjKb97wr16TMpv/xz3ka/kAF7AN51IyvUrV+X82bPS1dERgG1couGI9Hb3KOC2sWFiVa3s+Ga7vPWnN2Xm1BmyYN4CefWVV6W8ZJ5U3K2QSE9YYpGYJPriCrSSZk4lCrQAJ8cAbywclWhvn95/48p1WfXRKtm+dZt0tXVKX2+fhDp7VGLu6exRcI6Go9LZ1iWrV6+XRYuWaqQzWwnHqEu9sU01AYcAXfaa0/3m0knpH0hKqh+JMy698agSs4VIMi59qYTOCpgZ8NvOc5xNJpHmS5GCVcoNJF0k3wzRZtlEm+Uj2tKIdu4N6XZPygfwQkDMlIzgk0IErwG6uOihSyf+B1NXFuWgM+dZeCSb4MGJICRdOiiqDAxq6HVZcswKQs6h76UjIw0zmKKTh5CAIdcXeiXShz9xWLe+YlBlcNX2ZoCNoprKTeGo6zvWh8LRPoEisaiS/Sa1e6wfkQK0bZ0d0tzWmumDnLf76Xf2nOVF3jzniHrMXTbOswktku7+A3t149rPN3wqK1Ysl6+/3iIdnW0ST2BDCb49V1ogb31vzLmqZrev/bZBnHqGH+hPGNaZFcEztB/tYQBLWwKsACxtBwBzbDThoAu4AqZM15BQWTJLXFwkCFygICzunIdslRr3skMES4Fxj8I3F6BgWTDPomKA8GE14oPVDa27W3q6uhQU21tapbWpWUg729qlo7VNOtra9NiutTQ26T2c57mWpiapqaqS+tpaaWpokLaWFs0LkG1rbpHjR4/KgX37pOLePXe9uUXIo6m+QRrr6lUV0N3RrcC78fMv5Y3f/1Fem/JbWb54mdy5cVvam9uktqpWWhtbJBlNKMAi6aq0mkhLKpZUMAaQTQKur66TY4eOytbNX8uRA4f1+aa6RmmoqZem+ibNs6WhWepr6qXqfrVs/3aXfLV5qy7HxGCGY73t3UX9ASIHDrBH3V2l6upKqa6pkPuVd6SyplKq6mulprFe6pqbpKG1WRpaW6S+pVl/1zY1Sk1jg9Q2QY0Zqmtu1Ov1PBNQfVOj5CKuN7Y0S1Nri7S0t2knbe/qlI7urgzxuxDRsaHWjvZh1N7RrswPP0Do+SB4YzSEhAu/8gz8x+IdBnx4kABHeI1YnvaObH603/lSey5XynZPDJTEesBwx+pB3KPQ5wLCuP5BHGOt514jQFmFjzCR23ok1Nujewr29HRJN9TdKV1QF/nkpo7u4e3Q2dMtRggldpyvraxNuM/AFwC2tqTNaTNrv+yU9mtvb81LjY31cu3aFVm3bo28/de35P33/yZ/+/t7smrVCmHHcL4zHEY9lJtQTxQE5T6n5jTBLzu1gRwBBoEQrFq2bJkauN98801ZvNj55LMUGsMnbmwMkj74GuCSTjjoIjHArDAtYRxZEMFOEUzXli9froQSHMs8RHxd4uxyzHY9/C4vL9fjP/zhD2pIeuedd3SbHO5hN9RZs2ZlfpeVlcmSRYtk+YLFsrBknpTMnCPFM2fJvDnFsqCkVMrmzJWSWbOldNZcJa4XTZ8lc6fNlOIZs2Xe3CKZX1omC+aVS3lpmZQUFSmVl7lzpcXF8sqvXpYXX/iZ/OPv78usGTNkzsxZSsVz5+ozC+bNl5K5JTK/bL4Uzy6S137zmrzw7PPy3tvvytJFS2XlshWyZuUaAZDPnDwjjXWNKrUi2SLxAr6qYkikpT+RVgn26MEjsmTBYpk9fZZ88N77MmPqDJkzY7bMmTlH5hWXycLyhfrOGR9Ol7lzimXmzLkylXvmFKlbDU7k6Cape+qUHS+mTZ8mq1evlOUfLZPly5fKosULpKRsrswqmi3TZs+SGXPnyKziIpldUiyzS4pkZtFcmT5ntkyfM0vTGXNn6z0zi+botVnFc939xUUyh+eK5irNIp+5c2TmnNkZ4vfckmIpmVcmpeXzpLisVJ+ZwXtnz9L77TlSy4uU57gfKiotyRDnlYqKlC/gNaPi4mIxgr/gk3zEdXgK/po6dapMmTJFXn/9dc2LurN8LG/bkZf7jSftWr7U8siVlpZStnK1zOP0z+IajGm0JfpdFtxwHh9V7oPsmBCH9K1580qlDCorkdKyEikpLZaSkiIpDojjfFRUWpypU6tnUtoK8s/lqv+pM6YLxH20F7zAcfnCBTJ/0ULXRiXFej4Xn8yaO1vmzKH+c9OHU/8hH374gUyd9qF88I/3ZcaMafLe395V8OU7+e7y8rIxU0lpifIP7ZqL4A8j6po+9eyzz8p//Md/yA9+8AP5wQ9+KD/+8TPqrkmgK4yh+MuzUIlBcdIlXdN/MSIwAiMhMPojTTDdYy8pJFy8EtDX4vjPAghWnuEehuHs1MmTuhIL6z1b/Wzftk3Ps0IN6ZdtfHbt3Knb5ezft08unT0n96/ekJvnL8v5oyfk5P5DcubgUTl3+Lic3HdIDu/cI0d27dXjUwcOy4l9B+Xorn1yeMcevXZg5x7Zu2u37CbP7Tvk4P798t3FS1JdWSkNdXVy7vQZuXzhonS1t0tzQ6PcvHZdzp05o+dROxw5eFiOHz4m58+cV6n0/OlzcvHsBdm7c4/s2r5LDu07KOdOn5PayhqJR2JOuZkelEQ0IX2hiOp4STN62tSASr6oGnq7ewVVQjqRVkIqRveLoQ+pGOk4Eo5KVweSmtvIkSknkhAWX9qAAEPoxy9dZjrUJq2tzdLS2iz1DTVyr+K2tLS3SCydVJ0qelPVn3o6V9O7cg86V9WjogcM7jWdn+n7MMKY0QVjC1NKppvRRFz1g+j6eMa/xhTUJ3/6yvNMQ3NNd7kWCVRTfdFgoU32dDHudHFmBHkgTbD1vFtSjacMMZwRGsxFj2mlST/UZzZxbSQ1g01Vc6UYPJmGMj1FCiK1Y6Ql1ArmjcJ5prJIUrSzUzPEnEqBaXSgUojHozrtZmqeTBKUKbeRivPx1JBRzNqN1Ixp/rmM8SyZ0PakTU11YO3v63vJg3tyPcd5vRZHdcMUPzep2iRKyNSYSrWNjQ1S34DqhzCmKf1OpPy8lEcCNsk4hCqyuzsvIenSvvANbU2EQfT+r7zyivzyl7+U99//QL1e8IVndoIeHqClLfkjnVRJF4WzGcWQeikojIZojm6Ej0PFwJ5o6GtRH3z7zTey4bPP5OO162TTl1/Klo2bZP2atTL9w6ny7tt/lSULF8kn69bLujVrZM2qVUrrVq/R+z9Zv152fL1Vzuw/LCf3HJDdm76WL1etk0+Xr5LPP1qt6bpFy2TtwqXy8ZKP5JOlK2T94uXCOY6/WLlWPlmxWlavWKn5fblhg+zfs1fu3LylhjOMZoAuQIwK4url7+Sbr76Wlcs/kmWLl2jZVixbLqs/WiUfLf1IjV4L5y2QollzVR+LhIte9sDeA1JTUa0Ai/FM9bnocqHAqoCBDAMahjQAF+kXnW28L+7uwRJFxEAIHTCqiXhKomEC5IQk1B3W1Wg0urOGO6s8hjRA98aN66of0+3rAc9kVHoj3dLb1yvhWEQi8T7pS0SlDx0Zut04Xgl9GeI657gnmoypLjgWdFhtazpXPCbRmNN1AoIGSJG+iLY9qqGWVram71Cggy+wXscTznebfLCm23kzZpByH+dtR2i9V9348PdOq/U+Y50eBMAwguGmhlHtQau2neMZ8jchgUGd+kLlwDnjX+Nhv0yjOUYAoU/kJxd7ARWCBWCn87KyECMMizYIpGRTVjo0BCADwtQDbarAasY0DEeBUQkvFTfSmylzeNqPMTkwmllqRjBY047tmg2yfsqgCIDavQA1QGsDsAE4gMxzZmhzrF84YE8/Brxgao/3jfIA7Z7GONav315IfcBApIMQA1EOwruDNspH8DB8APCSotNlUEZAxN7U0eHUCQCrgSztZrp40kcCusZggLB2yMAPF0kYIAZ8kX71WiymgIbUCMCdPHZcdmzbpoBWMrdIvtq0WY4cOiSHDx6UU8dPyI1r16Spvl71sZFQr6R6+0RiaZF4WmItHVJz9ZbcPH1ebp6+IHfOXZLbZy/JrTMX5Mapc3Ll2Gm5fOSkXD95Tu/rqm6QeHevuoNhNItF+iTKLsUEliEITzgip0+clLOnT0u8D4myQy5fvKhlQddLeS6dvyBXLl2RU8dOyqVzF+Xa5aty5sRpuXX9VsZbARBFsm2ub5K25jYFTCRVJF+I66QmxQKm6InbW9ol3BMe8m4IJF7ywhuip6Nbvrt8VfbvPSQnTpzWnQ7QLSHpwgzUMYzBbOLy5Uuq28J4gJGlN9wj7Z0tEunrldRgWtLSL3TAwSzirLuW+3q2nzNtTLvbAEwKw6KzZ6UdnhQw7M2bN1VfCiOb9GlASscykDPQ8juFD3aAZ8Yy7VuvFXhHtt4DzAAr5UDiJdA+S9DtHZTJygBf27eZUdi+03g+O+W63ZsrxcUIwGU7IGLGsvcXhF6XaHXXrt3QeAzocwFZAJdOzR+pAyTnvZAKXMUSSQYxPIhiKgnmAhs7F004wPQl0nzSLUBqEqozgsV0FlNVWyMQel0zZDNz4X5mI+iGzaDGjIU8TJpWt7ECrnfUPe0CL9NOSJ60Fce0DaBcSJIf6RrPF/qz9uR9ELzKgEyZOGamwowDwtAJGdBmS7mTotPNVXhjNJ85qUhj6o72djlN7NytW1XK/fzTT+XT9R9L8Zy58v57f1OdLdIlQLz1q690ao+RDBcuDGHJUEQkHJfBnog03a6Qk7v2ydb1n8mmVetly5qPZdOqdbJx5VpNP1+2UtYtWCpfrlgrJ3ft1/sBXXxuAV2AFn9cXMdwGwNoAVzUCZHeXvXXRbpetWKFfPrxx/LZJ584KXz1Olm7aq1KvGtXrlG/3NMnTktddZ2qEFAdIJmixwVsFVyRclkkEfjuIunmIp6BUC0g/ZrnQ29XSMH922+2y/371dLS0q6LI9gfDJ0S/oMwKJIuy6lv3bqpU02kAjcNjUhvuFu6Qp3SGeqS7nCPxJIxhd54OiGJ/qS6k5GmAeVBXLeQVFJ6PtmPSiIpafWDdMACU6JSolNYG2MYBWiZtuMRUFlZqYMA0gL3wsCAMs9yjGQBr9ChDJDJi3Ok2cDs/FBx04mrS5wPNOatwTWdZqMiiUels6tDjU4cI52b9ER5UHOhxoI/DTBz8bWdM/7Ol5KH5UMHtnoxMMc/mIGSFVYsO2aWQnjQLVu+VrAljCSBk5B0+XNA6yzi/HbvRbIfG+GzbVKsSaBIrMEELCO9cs2kW1+FwPGps2fk8LGjCrBItf51y9Oe55pdV+AtALj+4Gt4kZ0yyxnrt7vnCg+KfrsCsqhLUUPBx3gw3Lp1W9U/zDwAW1RBtKGpgWyANH6Z6DTnijQrtDGfz3hUYDwWU/9XWjkZjUm4u0cB7sCevbLly40Zqbano1Ni4YhEQiEJdXZJKhZMu5muOS/MYAAAIABJREFUR5MiiX6R3qhEWjok0tQmyY4eSfdEJN3Vq9TfHdZz4eZ26W1slURnSCSWEkF6RP0RT0hfb1iBlt/44vJ73+49svGLL6Suuka9IQBf5gtcw0e3t5vy9KjutbO1Q70UWptaVRJFF6v+t4GRzABX3cQeAnQVpE21gG9uZ49cvnBZdcbXr9yQaJRt78Ny+fIV9fMkaArRxwAtrK0A3t17RBlDLxVWcMJlLJFC6uiTRDqhYBpPoWeLSigSkkgsoue5BsAqyALGafSASCoBBTpT7QyBq2A6CEHZGwqp/h6dfWtLi0oGnR0dOgigq0fHz71dgG9PjwwG/pDdXV0KwgP4b9M2LBlnmh4Q9/HneKrw9Fn9V9NJXa+Y7kcVkVLfTiT+5pZGaW1zMS3gS6QX6ool6MavpIX+jL/zpZaPXTfJifPUGV4m69Z9rEGJkJKYpeB9glGGyFpIwagYkHDdNzvgNamJfMYDOo8SdH3gzagcvKD9BrLD0wcXtPjA+yhAl/chGMAfeANt27ZNoyAyizx06LDOShgYUQmh3gNwkXJNr1uIf8Z7rSDownQwiIGujfiAWDzSJwOsYQdI0/3S3dYu61evkTnTZ8iVi5ck0RdVQE7H4tLXE5JId4/0xxOSYklrX1QkyZ4wbCOblP5wVAYjcZFoQtK9fTKA8QpPAa5ngIvtFZLS3xuV/mhC1Qm2KAKwDXV1q7vY3du3Vepes3KV3L97161EY0oRjSnoon5gYUVGLAh8b1EP4B4GqZQbSKtjAV2eVwNaelABHNVCxZ37svmLTerD29jQLKHuiHS2d2t8BZaPMjXFkMbIjO8p6gUkXTonjuQATzgSkrr6arl67bJUVN6Vvmiv6nkBY/XhTccl3c/0zf32U84bkR/fzwyBBSOoZ1D70K5XLl3WmcrhAwf1HmYOVfcr5OstW3TWgp68t6cn46LHs2HaN9QrA+jZmLr1RXVQtoHRzUoS7hoDYwQf1VCGwpEe8Sme6BMIqZ7zONtjRLz83QVpbKoTXIroUEjYSLoGuvzGZQxVmAHmWFMDXjoYfA+RF1Pmb7/dpoYYBkws3ki0qBWYsbAxJmoFwNiw3+/MnKM/PYmgaxKvrlLTVYPMfh+exvv9TvefX6/MDIwZIymzRpsJodsFhHfu3KWBkpidIOUCuAycLHRB8p3sv5ygay/1QdcHXpbaQvFwRGK9YelsaZWNn30ub73xJ5ny0q9k9rTpcvXiJYmGehWMAeRBluSyiiwWl1QkJv2xuAzEE5IOQFiBlOk4iw3oxF3dEu7olr6ukCR6+zL3xZFsAz0uRjOGJjq8qi46O1Xl8fprv5NXXn5ZPlq6TCrv31cJGFBmcYQOGAoKaZ36400AoQbIVimgOkBi9aVcHQQA0wKEakFdygDuRFrzv3Pzjny89mM5fuS4xNDvhvqko61L4wXQWQkLiK6JERpJF8PlqVMn5fqNa7Jv/17ZsOEzKZ9fJm+/8xeZWzRLjp88Iu0dLRLu65FkKqZAixSMsQ2KJ/vyUhR1RTis9UHKjIHBiDrat2ePoI7BGwRPENRCLDZZu3q17Ny+XZ8BWCHqH8AlBVjxo2YmwQCnS7BtAQt6PNpfRT24C0k0/5rEQUlLLBHR1XcMHHzX1m+3yEsvvyi/fW2KlJYWa4B9fMZRfzBA0bHoaAaOBpqWPiz4wu8OHJxNg8GQtqHjfvbZ57rkF/9OPBIAWNyOCLhDSE46MVNX+3tSQReVBZKuSbuoKgDelIbGdDt3MBV/WHoUoIvaC+Mv/u7s44j/N7zBu0+cOKkzFVRD5nWCQZTFLYCvtVeh1Np2LOmIoOsDr434SDKALdJrQ3WNHNi9R6Z/8A8pLy6Rz9atl2nvfyDrVq6SxppavY97AdtkX1SlYyQi65ToYZFYOaexE+BVjaHQr+f0GtdTaXcPYSSjuGb1ZKRYgANd8a3rN9RDYUF5ueChgDcFagYWUyDZ8Q59z5DyawhUwQF9N3jgJFQfWFUvm5G6C4OuAXPmmfSgVFdU61LjU8dPafAc9kGsrqzVKFkE4UY6cjECErrPGr7RxfjSzp4pr0z5tTz33LPy45/8j/zgh/8p//2jHyr4Ll22SBYuKpfyBaUyf2GZzF9QJouWzJfFSxdoqsdLFuhvzhmVzyuVRQsWCLr4UydOqDpIB6RQrxzaf0B18SwmAUhZoPL15i2y8qOP5BoBeEIhaait01mFLq1mI9NEQusePT4Scl1NjQI49c6S7F07dqgny+KFC2V+2Twpn1emZabcuYjvKCsvltKyIiXK/dZf/yz/5/9+X/77f34ozzz7E3nmmWc0sNC0adPULxfvBXiVzoaka7xq4Pmw4GvPkSeA64PuF198qWELAVtUCEi733yzTYGYAPSAEB2WP1JTK/CbY8ryJEi6Puj64Msy/IcFWv/+yQZdazOMwPhtMyjDEyyaAYj37z+goEvcDANWpFwWujBrsXOFUte6Y/tfEHQd0wypGIwRUSkgpYbaO+TQnr0yv6hUVi1ZLudPnJba+xXy+br18u6f35KNn36mv2M9YYl09kiMiEZ9zgDGiElDkmJVxc8T/0Gzktp1a3h+m04JiQNpCimLFEnr4L798uaf/qyLIL67dEnqa2rVne1v776rkhur3pDoAAgC0KC7RQpFmlVwDIxjJu0a4GaA0wB3tGmg/1Whrl909dvXm7+W3Tt2S21VnRrSdu7co9u8oFtiWoOky/QHFz1G6B07tsv+/Xt1CeXUqf+QV387Rf7rv3+ggHvw0D65e/+W3K+4I/fu31b/3Yqqu1JVfV+qau5LTV2lUm1dldTWO0I1UddQLQ31dToQtTU3S0+n07vrwNXRKUcPH5bNX3wpN65cVRXCxfPnFTCPHTosvV3dUlNRKft27ZazxLbo6pZ0PCHtzS1y+fwFOXrwkGzeuFGvoeuHyL++ukYq7tyVqnv39biutuaBslFGK19l1T25ffeGfhMr8FCnLFu+WJ597sc66Lz861/p4ggCxh84cEA2bNigHgzwJ3+k8Ajkg+/DAK/dS36WB50Z9QJR4tieh3bDVYxdK5By2e2DdjSgRdqFfNB1154c0KX/WR804NXIc8G32Tc+TDreQWck9QLtRJsx+1m0aJGusGUWxIDMattly5brdvAMkEi6DJ6ALQMosxTa0A2ONkgOT2nD8fyNGnSpKAPdAULkdffK6UNH5b0335JfPf9zmfq3v8vy8oWybMFCmfvhdHnj1d/J+2/+VbZt+UraahtEdHrJZmH9EotGNTIWMQGIKEYAFg3Cgv8hOw0P9mfiCNh5C4JDwBuNukXEI/SR4bD64v793ffk+//rf8k7b70tHy1bJsuWLFGp6rdTfqNgjASGexm1SXQwQFcBl36KlAuNFlBHuI98FdDxekgPqidDW1OrLsA4cfSEXDh/Sc6cYjfWI5mg20gCFvAG1yxG5zt3bmvBsOg3tzSpTnPbjq2yfec3cuXaJWnrbJK+eEgSaadKIC5Dsj+qv/slIUqD1JiL0SaCvgpyizVQ9yQifdLHYBiLy2AqrQB6eN9+2fT5Btm6eYsc3LNXbl+7Lt3tHWoUxWh6nsUn587r/ejoUR9xnrwunTsvVy9dVlUSun54BV0+77KZzOAAHhUxR/1xSQ/GJT0QlFcSWt7+waSeo+zhaLecPX9Ktu/aKhcun9Fl0bizYdRDesFPF5c29Lx0LoyRZtgx4IV3DUjplIUo+74M3weGtM7OLtXdYkxj3y+kXNuUko6MIc3vtAbCds69e+x63UdlSDPAzU41xCcB/vIQYx9mg7ykoTvH/v0jgS6zEjxNiLfAKluAFmEG/f+uXbtk9eo1wu7fgC2gyyo01EQMHBxz3toqV/pIQBcm8UEX48m9GzdlzZLl8ptf/EreeO138ubv/yhv/fENmfrO3+T137wqr/36FT3PEt7zx06qmxi6WfS55GVA64d0tEAtADEwYcFbSO0+nsPZ3oxhd2/dlhlTp8nLL70kH77/gfzut7+VKS//Wv7yxp/k1VemyGuvviq/+sUvZdb0GXL75s3AABcY0sAeb1kvQKzAOyoAxhKVm5CkIf96Et1fb0QIttPS2CJh6iLJPlsxCWvA9LjEouwim1a9IdPl+/fv6SICVv4kWB3GaqR4n+pxo/GwAEwQ+ttINCTJNHWb0KA4pFwbVNA1sHV61H4c8gFCQBHDV6RPf6Ojb2lolNPHT8jJI0dVOm1tbJKu1jYlwBM9/eljx+X6d1cUTPFQMUMpEu29W7elo6VVdf6AOM8AvGYHYJYUjxE+MKqUSkW13Ol0TMvdz8CR7NNzlB0wjkZRGbRJPB7We9SQRqjOpNvBg33pThw/LgkvWHwSZ/xggQ/eFnhR4FkB7w1qp88PvHaPGhuzXMb60/1SV1sv32z9Vnbt3CPNTS0SjyWltaVNamvqJYRO0FRVpsZCxUCQOmZTuBwq6CPtjo0A3X6EB1zbNOwn7mJDLmMcEbPa3devUflwE2RxAj62GMLOnD0jR48dFRbEcN6/7vK1PHKkGld6vKA7tm8fqrP87UcfAngZmN2McYewWSw7lbOjy4XzF6QHt1O8oFisEk+pnaUvEtPVopzLN6C49huPnOtt15MvG5MIYEQjjCjhrm6ViprrG7Sj1tyvkOp796Wuqlqq71dIQ02tNNbWCZ02hHEl8HagI8L8NlUZKfX9DFExqJoB5/cEgWjwk01pUJt7t++oLrGjtVUNOlUVFYInQ01llcbXZWUahh7VDacYigPpdoyp1UuulHoy6ShXOtDvQNmBswtTSbnQc0MVd++pHtQGCVz0ABG+NZVMSIrVYABXvE/6UwlGjmFi+uAAIJOQgXRSBvoDIkpZKiHpFM9GJRVEassosAYGpKOtVU4ePSofr1srSxYskGVLFsuWL7+U86dPS11NtXR3dkhfKCQnjx+Ti2fPSj9+uT09Eu3tldrKSjl25LB8d+mi5hOPAuRxvYf7KDOUZsBMp4Qy5qV+dPxBefHXTUT1e+MsEomGJRbtUw8J1SlTN4FeWQ18QbhPPcbgh+sa8WvNLgD/0akCemCA1AEXnf3QoMkxsyNiKCeicTlz8rQsW7xMPlq6XGN0bPpioxzaf0huXb+pC2m4xw24QbNkgzCDPSIUgwAUuNVRRgYIUnO1y5fqc3hBkE+W6EUezCb7IhEdiMgD/iHlWiQclrNnzsjlS5cy5yw/7uMe8s1PAJ577djS/ICZqz897DnDKfS3CC8Y0pgJEWMGabe1pVU6WjskFok6I7nZclSIGgUu6LeP/RtGpV7go+1DSJ3SalAt2OhVmbZjXMPIghcBVnCm/fjFIhXTKTIBx4PG9PMrdOyDlunWYB4Yk06H1Z0UEKaD4c6EHtF0vRiDADTuwbJOeTX4+BjB1sC6ECPwPX65s49hcOpDjYj6LXyP+yYF3Xv3ZM+uXXLvzh3tmNQvXhd8qxLB5HGbigBAdKyoJFkwEI8psAFqwlJSJe3hKpYwrR9k+S2SLgGtoxHp6eqUrs52iYRDml9nR5s01NVKxf27cvf2LampqpSO9laJ9IYkTESsrk45f45dNk5KU0O9nDp5XI4fPSKHDu6XrzZvkv1798id2zcF0AVk+1OAZ1LSKTp9Ut8/wJJXQDUPcd3KyrfwLHnxfXwrAemVt8J4YUSUxzhHG9Pu6O4fAFpcvoI6d1K3N075vGAd0D8XLIjRBS9IRUGMDVYgEjeZVYisNNTl3+jyA5US9+Ny6HvBOFsBg+4QDwC+NhPQlPm7JyU/cMzuGsovzjBMXn4eaizWOT4iNrOxfq0X+og9hxDCalL6A32UvqMDkxm0Aw+lYeUKzikYj6CiKdQ/HsU1sAJJd+vWrbJw4UJZuXKl+uqywOfurTu60hTfedw5dRGUb+PxVY4+H3jH4/mGMYEuoyFgBtCyzBbGR7JAkmS5L+BL4xrjK1OYcsRGd09yLgS62QBGZTKKA+QwFO8AlAB7ygKwEvgGyZeQj/zGs4FBgA5JuTJeCl4lGpiONi1U6dllLgS61I16VVgnSqWk8t59DeSD5d8AF/01nQJA0WDs8aiCGeDk5rPex7DSCYD1iVVoLL9NOeBzet0BPYfkCwADxAA19wDovaFuBVqOAV3Aua2lWYG4sb5OJd9zZ08rAN+4dlVu3rgmVRX3pb62Rp9XiRoJlwAuSSflArSAakGinCrpusEhA7ixqKomaHvjLeouAzrKY4Nan9mSbub+jKQ75A4IEBY0mJqRNeHcDAHSDA+hnsItMJpQwj/bDLTZYGvvQHI28NPUGxCUH4K40JlvCFz07Ld+bwFQpm/C7yrwMKOhXjIg2q+eP7j/bf/mWw0KBV/xPeTPwKW/M/f7z7rjxx10wQj0+rj3nT9/Xg1qxIxBvUAQruqKKh0kGTxpu2FuoV43KoQFhfr/SNfGBLpMPwwodBuceFyBlpgGJ48fV8u4eQooszN6ZkZzNyUaqWBc98HYBy7eT/7uHSy1de8nrgK+uV9+vkG++OxzXaJcXVGpzAcTwlQmlReq0NFcK1R+v9y5jmFa1wmGpB2rTzohK+nwxnDqBTd4McDVVlVrTIszp04psCGVIqGatKvAlkoooA1Jus7agYRroItOFUkZUESKJDVA7enudFI0q+CC6zxrz5OHStQs4Y1HpbW5Sdpam/UZQDtJXIBIWK/xOwOeSLqppFMtkJ8/IOQ6pryqZnADBXkp+BKbIJjhmJTr2nRI5UA7A0wZMDYACUDZSX95JF2/0xmwcY5qZAeQRFpjbhC4Hv9uFtUYyGbsAX4eHFs+D6SBP5mWb4gXMtKuWqwCadU/RnCxQdrvW/Z9uLlFozpToj8Sca+2ulpnB86YOShXLl+Wi+fOuxmhLql3/UkBV6Vj49EH08cddNHnYjjDsGqLaFA1AMIEcMJ2ogMnEi1tErRv3vbLbk+d7P8z1AvGQAODOt1j9RfxF4gmxgomwFaZHkZQxY/PfKMvsA9aBrw0ukl9MB+dDsLdafnSpcpQ+JsuXbRYjwF8plYsogB8KdtogLXQPRMDujD0UGcz4GXVF0uZCSiE+xvR2vDOeHXKFHnpxV+oj+3F8+dUBdDc1KCg104kMAJRt7VIS3OjNDXWD1FDvTTU1ypQo5tFSuU6Kc9DtTVVUlNdqZIs16qrKvSZ5saGzL3c39hQl3m+trpK6mqr9dmKe3f1mcr796S6skLq62r0XlQQmXfXVmsZkIR5Lh+h3rD38Cy/M8/UVKsOX4PdewHvWcRhRCB7Qnq2NEJNjppcIHxcB1sam6W5oTARcB6Dp1JDswaib6ht0Ngc7DpCMHriLBMQiby4Hw8VdIUcE8PjAaqq1eD2ddU871Ftrfo+4/8M4efMAJuPuM7CFWaVBPHnO/kuZnb4VROsH/XB2lWr5fXf/U5+88oryj8IJMRDwQ2QRTAISUjBJsDQp+DB4ZLxkwe6YAb9kz8fP/BkAUPQt5t0q+oeYqh4K1B1RpIDaH08KNT/R7o2JkkXqzBTXGssGp0gM4AcIRfZ0QEw1MbzwNmN4AEI57PcBef9gvsVx7EaBAL9FCMVYEoZdm7bLlu3fCV3bt1SSXHHt9vUiIbeirLaarTM6DZCxfqVnH3sl+9hj51O3GfmIeBloGKRx7ySUnnrL38RVtf97PnnNTA7XhnP/OjH8sJzz8lf/vSGzJ45QxaUz1NiwQM0r7RE5peXyeJFCxwtXCCLFsyXBfPnyXwWJZS5e0oINj5nlhQXzZGS4rkyd/YszY/fZSXFMq+sRJ/jWZ4pLSZY/Fwpmjtb38N7Ob9k8UK9j+fnzJopZaXF+v6FC8pl8UJXhkUL58vC+eVaBlI7pky56IF7yudpnlp+vrOsTIPRE8Q+F7E4ZvGChY4WLtTodwTOhz+NCDi/2Kf5i2SRR4vnLxq6Pn+RBqGfX1quAenLS8t1e6cFZfN1e6fSolIpmVOsQerLikplXsk84R62fuJYqbhMygIiEt/c2bOliI0A5hZJWXGJfsf8ebRluZSVlEjR7Dl5CU+caR9+KNOnTpUZ06bJzOnTNVj/7Jkz1U+d3zOnTZc3//xn5ZXnnnlWoGd/8hMN7v/hBx/o++kvzApsFgrvmU58SB3h86k7ftwlXQNd+iUeLriPAbaoHfidTrCtl/PTN727gbCpgLL7e/bvh+3z/v1jAl2b3tNgTPEACcImssKJkbSns2uoMRlxcNHRlWfOYKTT6xFAl8t+QX3gVWssIduCNf4wCNvw4J/L7hBEFGP1E5Ivul50gIzipOh3eS67Eh/2t1+2hz02Q+RwiWIIePG6IIIbcRCYFu7esVPokMQqRnLhO69cvqQSZxdbp7S1CJIu6gYIvatJsCqpBtKmSqXVVSqFcr21pUmf434kUqRgpF2kXn6TJ9TS1Kj5kSKBcv3e3duCVMv9SLYcQ+TBdQgJlXwgniOlPOSDNJ6PuDcjBXv5ab6Uv7ZWJVmk2VwEL2QkSZMi6+qUR7iGJMhWSkiqSrUNghTL1kpIsGy9pOT9ZvsmVhVW3quUqvtVGuCecwS65zznSDlHXmzRlPMdKi3zTKWjykoNk6pSbXW1qpYoY0ZCN0ndS5Fmu9o7AhqS8E3SR1pmGTexrHGbfPmXL8nf33tPf6NuwECLpHv21GkFWYySzt7hVn4WAlyuPe6gawtjbGZsIMx5jRSnqhmn0x8GsqZqGIUw9rB93r9/TKAL6CE5MqWngVnmSTDz1StX6ookVjoxndfGM0k341syCrT1brHCZoOuTcspAzpdgB89LtMqlp8i8RJWkmkXkjDGPUAO1cJkqxeszPnSIdDNrdMDVIhFjDGQ6R6DG9/IlJpdMIgPjHdBqLtL9a7EUkCvi/5UjWo4ipr3AltY4y3Attm4X3leDhyj2yUfjGbocNHdopeN9TnDmulpVT9LUPLgeTPIcT96YTOMcZ1nIY71Gi5i/cx8MEA5J0+7P1fKu9AXKwXGM/TQGWJXAIID5SR0u4F+l+uBRwMzM+oQoj7RwyLtaHCiIEAR8TIgNYoRkyMwjqG7ZZNSNholVjKbllqweg2SFDyn+t1gQYzqBy0+h4UADaawrl/gVeAMata+lNW8MKys+VOn2+Z+BB9mceo91NMTxCLp0T6B4HH/zl2tB94DuJInKobzZ87qeRNK6LMGvlpG04VnpY876Fq/A2SRbAFfjgmAQ6ozXfS5vgHVM5aiux9JCLN3jCUdEXQN/8jcxHNAF+AimAx6RwAP31KA7tuvt6o0iWQL2dRFpTozBozT3QSXK1xcNH94N5lSaZDIYgRMZ/v1b77+Wq5fveokXSKhBYDrdFaetZpRLTMwjMJHLxgFx1LZ9sxw0H3QUMJAAbjihQHQ0qlMleM6DX67jjAu+d4BgNwwDwHfE0D9dJ1BSw1ceVy2hl0L3L3UkOV5IfCefAQgD8sj6z0Y43KBrX+OvAFZJG2Me3wvBrs7t25qPIer332n7YvUBx8wo4GoJ0CEOiYFmLkOjxi44UfLtNKmltleBvy26zlTA+w8KYCe8zl7J9v8eC5jE32Mao/vzUequ/UMcbw/00+zADYX+D7uoDtMQAsCF4FdRixwca57uWOojMagZn15LOmYQRdmP3rosJw4dkynRIAdRjTAjuApxkiZxjTLKsA7TtBV9QTMQZDsRFLVGRieNIDL8RNy/MhR3a7n9o2b6hLD9Ek7XKBmUMd1PzbCYwa6uPqwv5sL6oNbi3PwZ6AxUAGEcgFuXtA1F6zAi6AQKA67ZqALyOJBELh+5QNcff84QRepWIE7lVTpmPLcvokK64imGJLwMd244Qu5cO6ctj91BtiQIvWpRBsslFAJMurcDHXQ7R8C1Vx+tCOCbgCehYC10DUWZlj/mIx01KDruapl+um/KOiaThfgfaJA18R0DGlMa3BtQhrT+KrtHRoCEKDDQ8CYKdOYEwi6SLpuiiYKQuhpkbSRDvFx5RgpHGsugEungxEhfQ7gf4xB11QKgC1TPiQ2N810U0o1YuaQOk3CfECSNGk3AF67bxi4Zkmjw65lAS/gO5mgixrCV1uge96x7VtdeIHOmvpgxeHnn3wqxw4fUX6jjRmUVMpV4Aikt2BgRrrjOgQPGCiOBXRVMjbVQY50JNCedNAdtuDGFt5kpWMEXOruSZJ0kXpNt2vA+8SBLiMFywthcqQujGZqnAqcqm2aN5mgi3pDAXTAOcLT0dxv50qmnStYoWZTKQVbfxR/nEGXwNDBNBmANUkN1YKqF1j26k3vfRAFcAEs9YM1X1fzdw2A9QFQzrdYIQus7Z3++4aBcyHg9q6N9H7zx0Un3NneJkcOHZSNX27QlW7orhnU0dszs8HJn8GJeoH3kHSZVpsaxgYtO4fek2uFQBdLNsA5WeSWGD/oFfAAj/r8+lDHo5ekM0IR+fuCkakCc6Xjnak+oudzqRkAXpbhqwqhUOCqEYxpY1Er2DOjUi9wsz9iIOnCzDqVC4Uy0b5gZnRonJ9M0GWkpRMpoAZGPQeuTm+nzAsgByt77Jr7HQTUfgJAlzpmAHHl9yUVZxgzwMsGsQzosuggB/Bm3+/rUh84zgG8kw26LCHGOAjo4mWx4bNPdYkxut3urg5d5s3uzxhuDx044KTXADDgC1UtBKsmTTXjjGt9zg91BEn33wV0xwS4E6EefESga7hl4GsS72MPuobOVnBSMwQhjcHUGKIUINRjwa2WmUzQVZ2wuqC56FW8yyQZOpwDZBf6kYHAqRbcbsEAmMZeeJxBF6W/gW0wDUTloINGMEUGcH3w9IHWQiRlVn35wEtcA5OEc60Es3P+Mz7wZr33AZDOkqptYPBTv9y5nqd83I/EC+iuWb1Svvzic12SjE4Zne3+PXs1QD3uX9gXUDegSnJqGJYcu90taHtigejS8Dt3FLAZlAtKujlUBr7hZWT1gdttxH/GP1abQi4JcsLOPaQU7Uu4DyxkyjI0q/1j9ItX24Z5AAAEaUlEQVSbDD/+mamPXRwTZW4k74SRro/newpKupZxdqGRdAE2wA7mtqkczAwIM92fbNBlKsQ7dEpEHQJKrKbhOIjURLkg7jN1hHsuCFxugS0eM0MaEogNFNQzZCBC/er3BSoBH0CdS5YFugmW/+YAUf+ZDDDbfX6aB3hHAk2u+yCbfTzS83wH92AsZJnx5599opHPWAFHDAgWv3y1ebOcPnFSA7ZgxOU3y1qJvwEos1oLd0ZUX+j5Wdm3Z+cuXUbd2dYxLtD1AXQsx5MPug96xOjy3wyoe6D80ICrDvTDfOgNJx6ntJCf/2MPutmAS8Way5hKY55CHqDgnAGugqIZvbIad1wNRF4BMCFhA7ZI3RCAhLTDOdOFAlp6ztxk1KAWjHY+4NrxCPocgH085beZwvCO4HUU82nGj9OMIrrG3mYZAzIQxEMYxOhkwT/VP5d7PAquA7Q8k/2cPZ83tecUSAFTlori8jWU3wPH3r3cn00jPd8XCUuop1vDWPZ0d8nunTtk/do1cvLEcTl14rgCLN4LbpFAuy6bBVABXRMG8E1lEQBqBfUE6enRxQB7d+3W58Yj6Spo5omlbNfQ2+ajxxJ0RyXhmtT7+Eu6vqsrfdXHsXGD7jj7f0FJ1wr+QPoIdTLjAbcn9Vn1Q/b8Cs2/0FINDfkEt8FIgw6zE4xlJu3jIoY6gVV6ly5cUIOZm82kFVTxVNm/d686/BOLgFVXy5cslRXLl6tkq6vQGhp0qTpxQVgGWshIhvRayNCiY9oTXP9Par/4Vyn3mED3X+XjH9fvYFQ2pX+ulOuPa9lHU66RQJfrgCreCLj/AajE9GCzUcIRIq1yjqW0+DJX3Lsne3fv1uBGzGh4jihaN69fV/USsyKW1bKSD91uvA+VU27HeAXcEUH38Zf0RtMOT+/557TjU9B9DCUWfyqU7/hJ7jAjgS4qAlUVBSsfcUtkSTQrDY8cPCSE8MR7gUBGSMXoeFmUc/rkSTWmoZJB4iX+Ai5ixLLYtX2HsFsxYTHZMqmQJDvStZG2+3mS2+Zp2ScfiJ+C7mMIuv/qjD8S6CKZOnuA092bIRSfZaRY9LSmD+ecBXghZoWeHxQ1oBFUH30uW8ezYvHg/v26gAZvhpGs0yNd/1dvo6ffN3ng+xR0n4LuI1dVjAi6gVEHFQNuYKx4RKJ1/tfOiZ9rSMNIxf6xA+ggLqw6wbudOTCq4sngfMhHDmjyFHQnD3T+3QH9Keg+Bd3HDnTNY8OkVgtIBKCy+AawzUjDZnXXiF1u6yYzwgHSBszqSui5FY4EqvbOfOm/O3A8/f6xD0pPQfcxBN18elz//JPM9CNKukH8ZdwBdbEDsSfibI3jXAKdu6DzXTb9L6nz2cafh+11BvRZ3dIn2LwUMNd7RloGmh15zlwJvfRJrv+nZR87YE5E3T0F3aeg+9hJugrKQfhOBUqk2UCSdcDpfiP5QgCuUysQI9cBs/loG/iipuA+wBsgL2gsewq6j5wnJgLMnpQ8/j/RoAPjyVZ12gAAAABJRU5ErkJggg==" alt="两台型号不同的水泵的串联" width="349" height="261" />

 

  由图可知,当管路性能曲线不与A+B联合曲线相交时,会发生串联后的全压与单台相同,或者小于单台风机,同时风量也有所减少,功率消耗却增加。由此可见,在需要采用串联的方式提高扬程时,应尽可能采用性能曲线相同的水泵进行串联。

 

  三、水泵的变速调节

  据长沙中联泵业相关的调查显示,在水泵的生命周期内,购买价格加上其维护成本仅占总成本的15%左右,也就是说,电耗成本占了其中的85%左右,因此,电耗成本是水泵成本中最贵的一部分。同时,在实际的工作状况中,用户或供水终端对供水量的要求并非一成不变的,当用水需求量发生变化时,如果仍然按照原来的功率进行供水,则由效率曲线图可知水泵工作将偏离最佳的工作点,导致效率下降,浪费能源。目前,最常用的方法是采用变频调速的电动机来改变泵的转速,以满足工况发生改变时对水泵性能的要求。由实践经验可知,当水泵转速下降时,水泵消耗的功率也将大大下降,因此具有显著的节能效果。下图7是不同转速下水泵的H-Q图。将水泵的转速改变至较低或较高的速度时,泵的性能曲线同样会发生改变。

  图7:水泵的性能曲线随转速的变化图

  

水泵节能的影响_长沙中联泵业有限公司 -
您的位置: 首页 新闻资讯 行业资讯

水泵节能的影响

水泵节能的影响
时间:2016-02-20
水泵被广泛应用于我国工业、农业以及日常生活等多个领域中,如建筑供暖、供冷、城市给排水、核电、火电以及石油化工等。同时,它也是我国工农业领域最主要的能耗设备之一,据统计水泵的耗电量约占全国总发电量的20%

  水泵被广泛应用于我国工业、农业以及日常生活等多个领域中,如建筑供暖、供冷、城市给排水、核电、火电以及石油化工等。同时,它也是我国工农业领域最主要的能耗设备之一,据统计水泵的耗电量约占全国总发电量的20%,而在供水企业中,水泵电耗占总能耗的比重最大,其电耗约占水厂制水成本的30%〜50%。同时,我国泵类产品性能以及配置的合理性与发达国家相比还有很多差距,对泵不合理的配置导致水泵未能发挥其最佳性能也是做出能源浪费的一大来源。而随着社会的发展,对于水泵节能的要求会越来越高。由此可见,研究分析水泵的节能性以及实际工程中的合理配置,提高水泵的效率以及整个系统的运行效率,降低能耗,节约成本,对于我国的节能减排具有十分重要的意义。

  目前,水泵的节能途径主要有本身节能、系统节能和运行节能三个方面,这里主要对系统节能进行深入分析探讨。在传统的节能工作比较注重水泵自身的能效而忽略了系统节能的重要性,水泵合理的选型,多个水泵合理的串并联等都对水泵的节能效果产生重要影响。

 

  一、水泵的合理选型

  水泵是整个水系统的耗能的最主要设备之一,中联水泵的选型是否合理将影响到水泵的运行效率、系统的稳定性与经济性。

  水泵的扬程H的定义为:泵所输送的单位重量流量的流体从进口至出口的能量增值。也就是单位重量流量的流体通过水泵所获得的有效能量。

  而泵的流量扬程曲线Q-H如下图1所示:

  图1:水泵的性能曲线图

  水泵的性能曲线图

 

  由图1可知,随着水泵的流量的增大,水泵的扬程下降。在实际运行中,所有的水泵均存在一个最佳的工作点,在该工作点上,水泵以最高的效率运行。如下图2所示:

  图2:水泵的效率曲线图

  

水泵的效率曲线图

  但在实际的工程中,考虑到一些工程的超前性,一般会对区域的最终用水量预测偏大,同时在水泵的选型过程中,也会对扬程留有一定的余量。长沙中联泵业对长沙地区多个供水泵房实际工况进行了调查,结果发现多数水泵的实际运行扬程要低于水泵的额定扬程,有的甚至相差30%以上,由水泵的流量扬程曲线与流量效率曲线可知,其效率将降低,水泵无法运行在最佳的工作状况,导致能源浪费。因此,水泵的合理选型对于提高水泵的工作效率与节能具有十分重要的意义。

 

  二、两泵匹配不合理而导致效率下降

  在实际的工程中,为了满足系统中的流量以及压头的需求,有时需要将两台或多台水泵并联或串联在一个共同管路系统中联合工作。水泵的联合工作方式可以分为并联和串联两种,具体的运行工况需要根据联合运行的机器总性能曲线与管路性能曲线确定。下图3为水泵的并联运行Q-H图:

  图3:两台型号相同的水泵的并联

  

两台型号相同的水泵的并联

 

  由图3可知,并联泵的总性能曲线,是由同一压力下的各机流量叠加而得,但两水泵并联合理时,可以有效地增加流量,为系统提供足够的流量。然而,当两台性能曲线不同的泵并联运行时,则有可能出现以下情况:

  图4:两台型号不同的水泵的并联

  

两台型号不同的水泵的并联

 

  由上图4可以看出,管路性能曲线不一定与两泵并联后的性能曲线A+B相交,只是与单台水泵B曲线相交,所以,在这种状况下,并联后的流量可能并不增加。甚至还可能通过A水泵发生倒流,使总流量反而小于B水泵单台运行的情况。所以在实际工程中,需要通过管道泵并联运行以增加流量的情况下,宜采用相同型号及转数的水泵。

  在实际工程中,为了满足系统所需的压头,往往需要将两个或多个水泵进行串联增压,水泵串联增压的Q-H图如下:

  图5:两台型号相同的水泵的串联

  

两台型号相同的水泵的串联

 

  同样,串联运行时可以为系统提供足够的压头,当但两台性能曲线不同的水泵串联运行时,有可能出现以下情况:

  图6:两台型号不同的水泵的串联

  

水泵的性能曲线随转速的变化图

 

  由于水泵功率与转速的三次方成正比,所以当转速减少时,长沙中联管道泵所消耗的功率也将大幅下降,可以提高工作效率,节约能源。同时也可以有效消除水锤,降低机械冲击,延长水泵的检修期和使用寿命。



  四、新产品新技术

  长沙中联泵业具有高效区宽、性能范围广、汽蚀性能好、运转安全和平稳、噪音低、易损件少,安装维修方便等优点。可靠性大大提高,无故障运行时间是普通泵的3倍以上,用户维修成本大大降低,从而降低泵的寿命周期成本。高压自平衡节段式离心泵将传统多级离心泵的结构形式进行了创新,取消了多级离心泵的轴向力平衡机构,真正实现高效技能的效果。

  图8:一年省下来40万电费

 

  五、总结

  水泵节能具有重要的现实意义,尽管水泵节能的方法和措施很多,如新喷涂材料的使用、采用新的密封技术等,但水泵的节能仍然是一个长期的任务,提高水泵的节能是一个很大的项目,需要加强不同国家间的技术交流,展开科研攻关,以及通过不断努力,提高产品的技术质量和水平,为节能减排做出贡献。

产品推荐
查看更多产品
30 年研发经验
Experience
02 年质量保证
Quality
7000 家成功案例
Case
70 项专利证书
Patent
Baidu
map